Simpson’s type inequalities for η-convex functions via k-Riemann–Liouville fractional integrals

SETH KERMAUSUOR

Abstract. We introduce some Simpson’s type integral inequalities via k-Riemann–Liouville fractional integrals for functions whose derivatives are η-convex. These results generalize some results in the literature.

1. Introduction

The well known Simpson’s inequality states as follows.

Theorem 1.1. Let $f : [a, b] \rightarrow \mathbb{R}$ be a four times differentiable function on (a, b). Then

$$\left| \int_a^b (t) dt - \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right| \leq \frac{(b-a)^5}{2880} \| f^{(4)} \|_\infty,$$

where $\| f^{(4)} \|_\infty = \sup_{x \in (a, b)} | f^{(4)}(x) | < \infty$.

Many authors have studied and provided several generalizations of this inequality over the years. For some results related to the Simpson’s inequality, we refer the interested reader to the papers [1, 2, 5, 9, 10, 15–17].

Gordji et al. [7] introduced the concept of η-convexity which generalizes the classical concept of convexity.

Definition 1.2. A function $f : I \rightarrow \mathbb{R}$ is said to be η-convex on I with respect to the bifunction $\eta : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ if

$$f(tx + (1-t)y) \leq f(y) + t\eta(f(x), f(y))$$

for all $x, y \in I$ and $t \in [0, 1]$.

Remark 1.3. If $\eta(x, y) = x - y$, then we recover the classical notion of convexity.

Received May 18, 2018.
2010 Mathematics Subject Classification. 26A33; 26A51; 26D10; 26D15.
Key words and phrases. Simpson’s inequality; η-convex functions; Hölder’s inequality; k-Riemann–Liouville fractional integrals.
https://doi.org/10.12697/ACUTM.2019.23.17

193
For more information on η-convex functions and some related results, we refer the interested reader to the papers [4, 7, 12] and the references therein.

We complete this section with the definition of the k-Riemann–Liouville fractional integrals.

Definition 1.4 (see [11]). The Riemann–Liouville k-fractional integrals of order $\alpha > 0$, for a real-valued continuous function f, are defined as

\[kJ^\alpha_a f(x) = \frac{1}{k \Gamma_k(\alpha)} \int_a^x (x - t)^{\alpha - 1} f(t) dt, \quad x > a, \]

and

\[kJ^\alpha_b f(x) = \frac{1}{k \Gamma_k(\alpha)} \int_x^b (t - x)^{\alpha - 1} f(t) dt, \quad x < b, \]

where $k > 0$, and Γ_k is the k-gamma function given by

\[\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-t} t^k dt, \quad \text{Re}(x) > 0 \]

with the properties that $\Gamma_k(x + k) = x\Gamma_k(x)$ and $\Gamma_k(k) = 1$.

Remark 1.5. If $k = 1$, then we have the Riemann–Liouville fractional integral of order $\alpha > 0$. If $\alpha = k = 1$, then we get the classical Riemann integral.

For more information and some results related to this integral operator, we refer the interested reader to [8, 11–13] and the references therein.

Our goal in this paper is to provide some Simpson’s type integral inequalities involving the k-Riemann–Liouville fractional integral for functions whose first derivatives in absolute value at some powers are η-convex. Our results generalizes some results in the literature.

2. Main results

To prove our main results, we need the following integral identity via the k-Riemann–Liouville fractional integrals.

Lemma 2.1. Let $f : [a, b] \to \mathbb{R}$ be a differentiable on (a, b), $a < b$, function. If $f' \in L_1([a, b])$, $n \geq 0$, $\alpha > 0$, and $k > 0$, then the following identity holds:

\[
S(\alpha, n, k) := \frac{1}{6} \left[f(a) + f(b) + 2f\left(\frac{a + nb}{n + 1}\right) + 2f\left(\frac{na + b}{n + 1}\right) - \Gamma_k(\alpha + k) \left(\frac{n + 1}{b - a}\right) \frac{\alpha}{k} \left[kJ^\alpha_{\frac{a+nb}{n+1}} f(a) + kJ^\alpha_{\frac{na+b}{n+1}} f(b) \right] - \Gamma_k(\alpha + k) \left(\frac{n + 1}{b - a}\right) \frac{\alpha}{k} \left[kJ^\alpha_{a} f\left(\frac{na+b}{n+1}\right) + kJ^\alpha_{b} f\left(\frac{a+nb}{n+1}\right) \right] \right]
\]
\[= \frac{b-a}{2(n+1)} \left\{ \int_0^1 \left[\frac{2(1-t)}{3} - \frac{t^2}{2(1-t)} \right] f' \left(\frac{n+t}{n+1} a + \frac{1-t}{n+1} b \right) dt \right. \\
+ \left. \int_0^1 \left[\frac{t^2}{3} - \frac{2(1-t)}{3} \right] f' \left(\frac{1-t}{n+1} a + \frac{n+t}{n+1} b \right) dt \right\}.
\]

Proof. Integrating by parts, using change of variables, and the definition of the \(k\)-Riemann–Liouville integral, we have

\[I_1 := \int_0^1 \left[\frac{2(1-t)}{3} - \frac{t^2}{2(1-t)} \right] f' \left(\frac{n+t}{n+1} a + \frac{1-t}{n+1} b \right) dt = \frac{n+1}{3(b-a)} \left[f(a) + 2f \left(\frac{na+b}{n+1} \right) \right] - \frac{2\Gamma_k(\alpha+k)(n+1)}{3} \left(\frac{n+1}{b-a} \right)^{\frac{\alpha+1}{\alpha}} \\
\times k J_{\frac{\alpha}{\alpha+1}} \left(\frac{na+b}{n+1} \right) f(a) - \frac{\Gamma_k(\alpha+k)}{3} \left(\frac{n+1}{b-a} \right)^{\frac{\alpha+1}{\alpha}} k J_{\frac{\alpha}{\alpha+1}} \left(\frac{na+b}{n+1} \right)
\]

and

\[I_2 := \int_0^1 \left[\frac{t^2}{3} - \frac{2(1-t)}{3} \right] f' \left(\frac{1-t}{n+1} a + \frac{n+t}{n+1} b \right) dt = \frac{n+1}{3(b-a)} \left[f(b) + 2f \left(\frac{a+nb}{n+1} \right) \right] - \frac{2\Gamma_k(\alpha+k)(n+1)}{3} \left(\frac{n+1}{b-a} \right)^{\frac{\alpha+1}{\alpha}} \\
\times k J_{\frac{\alpha}{\alpha+1}} \left(\frac{a+nb}{n+1} \right) f(b) - \frac{\Gamma_k(\alpha+k)}{3} \left(\frac{n+1}{b-a} \right)^{\frac{\alpha+1}{\alpha}} k J_{\frac{\alpha}{\alpha+1}} \left(\frac{a+nb}{n+1} \right) f(b).
\]

Using these equalities, we have that

\[I_1 + I_2 = \frac{2(n+1)}{b-a} S(\alpha, n, k),
\]

which gives the desired identity. \(\square\)

Remark 2.2. If \(k = 1\), then we obtain the identity in Lemma 2.1 of \([15]\).

Theorem 2.3. Under the conditions of Lemma 2.1, suppose that \(|f'|\) is \(\eta\)-convex on \([a, b]\). Then

\[|S(\alpha, n, k)| \leq \frac{b-a}{6(n+1)} \left\{ \mathcal{A}(\alpha, k) (|f'(a)| + |f'(b)|) \\
+ \mathcal{B}(\alpha, n, k) \left(\eta (|f'(a)|, |f'(b)|) + \eta (|f'(b)|, |f'(a)|) \right) \right\},
\]

where

\[Q(\alpha, k) := \frac{2^\frac{1}{\alpha}}{2^\frac{1}{\alpha} + 1}, \quad \mathcal{A}(\alpha, k) := 3 - 4(1 - Q(\alpha, k))^{\frac{\alpha+1}{\alpha}} - 2(\mathcal{Q}(\alpha, k))^{\frac{\alpha+1}{\alpha}},
\]

and
\[\mathcal{Q}(\alpha, k) := \frac{2^\frac{1}{\alpha}}{2^\frac{1}{\alpha} + 1}, \quad \mathcal{B}(\alpha, n, k) := \frac{2^\frac{1}{\alpha}}{2^\frac{1}{\alpha} + 1} \left(\frac{n+1}{b-a} \right)^{\frac{\alpha+1}{\alpha}}.
\]
and

\[B(\alpha, n, k) := \frac{3n + 1 - (n + Q(\alpha, k)) \left(4(1 - Q(\alpha, k))^2 + 2(\alpha, k) \right)}{\frac{4}{\alpha} + 1} + \frac{1 - 4(1 - Q(\alpha, k))^2 + 2(\alpha, k)}{(\frac{4}{\alpha} + 1) (\frac{4}{\alpha} + 2)}. \]

Proof. Using Lemma 2.1 and the \(\eta \)-convexity of \(|f'| \), we get

\[
|S(\alpha, n, k)| \leq \frac{b - a}{6(n + 1)} \left\{ \int_0^1 \left| 2(1 - t)^{\frac{2}{\alpha}} - t^{\frac{2}{\alpha}} \right| \left| f' \left(\frac{n + t}{n + 1} a + \frac{1 - t}{n + 1} b \right) \right| dt + \int_0^1 \left| t^{\frac{2}{\alpha}} - 2(1 - t)^{\frac{2}{\alpha}} \right| dt + \frac{1}{n + 1} \eta\left(|f'(a)|, |f'(b)| \right) \right\}
\]

\[
\int_0^1 \left| 2(1 - t)^{\frac{2}{\alpha}} - t^{\frac{2}{\alpha}} \right| dt = \int_0^{Q(\alpha, k)} \left(2(1 - t)^{\frac{2}{\alpha}} - t^{\frac{2}{\alpha}} \right) dt + \int_{Q(\alpha, k)}^1 \left(t^{\frac{2}{\alpha}} - 2(1 - t)^{\frac{2}{\alpha}} \right) dt = A(\alpha, k) \tag{2.1}
\]

and

\[
\int_0^1 (n + t) \left| 2(1 - t)^{\frac{2}{\alpha}} - t^{\frac{2}{\alpha}} \right| dt = \int_0^{Q(\alpha, k)} (n + t) \left(2(1 - t)^{\frac{2}{\alpha}} - t^{\frac{2}{\alpha}} \right) dt + \int_{Q(\alpha, k)}^1 (n + t) \left(t^{\frac{2}{\alpha}} - 2(1 - t)^{\frac{2}{\alpha}} \right) dt = B(\alpha, n, k). \tag{2.2}
\]

\[\square\]
Remark 2.4. If $k = 1$ and $\eta(x, y) = x - y$ in Theorem 2.3, then we recover [15, Theorem 2.2].

Theorem 2.5. Under the conditions of Lemma 2.1, suppose that $|f'|^q$ is η-convex on $[a, b]$ for $q > 1$. Then we have the inequality

$$
|S(\alpha, n, k)| \leq \frac{b - a}{6(n + 1)} \left((A(\alpha, k))^{1 - \frac{1}{q}} + \frac{B(\alpha, n, k)}{n + 1} \eta\left(|f'(a)|^q, |f'(b)|^q\right) \right) + (A(\alpha, k))^{\frac{1}{q}}
$$

where $A(\alpha, k)$ and $B(\alpha, n, k)$ are defined in Theorem 2.3.

Proof. Using Lemma 2.1, Hölder’s inequality, and the η-convexity of $|f'|^q$, we have

$$
|S(\alpha, n, k)|
\leq \frac{b - a}{6(n + 1)} \left\{ \int_0^1 \left| 2(1 - t)^{\frac{q}{2}} - t^{\frac{q}{2}} \right| f'\left(\frac{n + t}{n + 1}a + \frac{1 - t}{n + 1}b\right) dt
\right. \\
+ \left. \int_0^1 \left| t^{\frac{q}{2}} - 2(1 - t)^{\frac{q}{2}} \right| f'\left(\frac{1 - t}{n + 1}a + \frac{n + t}{n + 1}b\right) dt \right\}
\leq \frac{b - a}{6(n + 1)} \left(\int_0^1 \left| t^{\frac{q}{2}} - 2(1 - t)^{\frac{q}{2}} \right| dt \right)^{1 - \frac{1}{q}}
\times \left(\int_0^1 \left| 2(1 - t)^{\frac{q}{2}} - t^{\frac{q}{2}} \right| f'\left(\frac{n + t}{n + 1}a + \frac{1 - t}{n + 1}b\right) dt \right)^{\frac{1}{q}}
\times \left(\int_0^1 \left| t^{\frac{q}{2}} - 2(1 - t)^{\frac{q}{2}} \right| f'\left(\frac{1 - t}{n + 1}a + \frac{n + t}{n + 1}b\right) dt \right)^{\frac{1}{q}}
\leq \frac{b - a}{6(n + 1)} \left(\int_0^1 \left| 2(1 - t)^{\frac{q}{2}} - t^{\frac{q}{2}} \right| dt \right)^{1 - \frac{1}{q}}
\times \left\{ \int_0^1 \left| 2(1 - t)^{\frac{q}{2}} - t^{\frac{q}{2}} \right| \left(|f'(b)|^q + \frac{n + t}{n + 1} \eta\left(|f'(a)|^q, |f'(b)|^q\right) \right) dt \right. \\
+ \left. \int_0^1 \left| t^{\frac{q}{2}} - 2(1 - t)^{\frac{q}{2}} \right| \left(|f'(a)|^q + \frac{n + t}{n + 1} \eta\left(|f'(b)|^q, |f'(a)|^q\right) \right) dt \right\},
$$

which proves, in view of (2.1) and (2.2), the desired inequality. □
Remark 2.6. If \(k = 1 \), and \(\eta(x, y) = x - y \) in Theorem 2.5, then we recover \[15, \text{Theorem 2.4}\].

Theorem 2.7. Under the conditions of Lemma 2.1, suppose that \(|f'|^q\) is \(\eta \)-convex on \([a, b]\) for \(q > 1 \). Then

\[
|S(\alpha, n, k)| \leq \frac{b - a}{6(n + 1)} \left(\frac{2^{\frac{\alpha}{p} + 1}}{\left(\frac{\alpha}{p} + 1 \right) \left(\frac{2^{\frac{\alpha}{p}} + 1}{2^{\frac{\alpha}{p}}} \right)} \right)^{\frac{1}{p}}
\times \left\{ \left(\left| f'(b) \right|^q + \frac{2n + 1}{2(n + 1)} \eta(|f'(a)|^q, |f'(b)|^q) \right)^{\frac{1}{q}}
\right.
\left.+ \left(\left| f'(a) \right|^q + \frac{2n + 1}{2(n + 1)} \eta(|f'(b)|^q, |f'(a)|^q) \right)^{\frac{1}{q}} \right\},
\]

(2.3)

where \(1/p + 1/q = 1 \) and

\[
C(\alpha, k, p) := \int_0^1 \left| 2(1 - t)\frac{\alpha}{p} - t^\alpha \right|^p dt.
\]

In addition, if \(\alpha/k \in [0, 1] \), then

\[
|S(\alpha, n, k)| \leq \frac{b - a}{6(n + 1)} \left(\frac{2^{\frac{\alpha}{p} + 1}}{\left(\frac{\alpha}{p} + 1 \right) \left(\frac{2^{\frac{\alpha}{p}} + 1}{2^{\frac{\alpha}{p}}} \right)} \right)^{\frac{1}{p}}
\times \left\{ \left(\left| f'(b) \right|^q + \frac{2n + 1}{2(n + 1)} \eta(|f'(a)|^q, |f'(b)|^q) \right)^{\frac{1}{q}}
\right.
\left.+ \left(\left| f'(a) \right|^q + \frac{2n + 1}{2(n + 1)} \eta(|f'(b)|^q, |f'(a)|^q) \right)^{\frac{1}{q}} \right\},
\]

(2.4)

Proof. Using Lemma 2.1, Hölder’s inequality, and the \(\eta \)-convexity of \(|f'|^q|\), we have

\[
|S(\alpha, n, k)|
\leq \frac{b - a}{6(n + 1)} \left(\int_0^1 \left| 2(1 - t)\frac{\alpha}{p} - t^\alpha \right|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 \left| f' \left(\frac{n + t}{n + 1} a + \frac{1 - t}{n + 1} b \right) \right|^q dt \right)^{\frac{1}{q}}
\left.+ \left(\int_0^1 \left| 2(1 - t)\frac{\alpha}{p} - t^\alpha \right|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 \left| f' \left(\frac{1 - t}{n + 1} a + \frac{n + t}{n + 1} b \right) \right|^q dt \right)^{\frac{1}{q}} \right\}
\leq \frac{b - a}{6(n + 1)} \left(\int_0^1 \left| 2(1 - t)\frac{\alpha}{p} - t^\alpha \right|^p dt \right)^{\frac{1}{p}}
\times \left\{ \left(\int_0^1 \left| f'(b) \right|^q + \frac{n + t}{n + 1} \eta(|f'(a)|^q, |f'(b)|^q) \right) dt \right\}^{\frac{1}{q}}.
\]
\begin{align*}
&+ \left(\int_0^1 \left(|f'(a)|^q + \frac{n+1}{n+1} \eta \left(|f'(b)|^q, |f'(a)|^q \right) \right) \frac{1}{q} \right) dt \\
&= \frac{b-a}{6(n+1)} \left(\int_0^1 \left(\left| 2(1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right|^p dt \right)^{\frac{1}{p}} \right) \\
&\times \left\{ \left(|f'(b)|^q \int_0^1 dt + \frac{1}{n+1} \eta \left(|f'(a)|^q, |f'(b)|^q \right) \int_0^1 (n+t) dt \right)^{\frac{1}{q}} \\
&+ \left(|f'(a)|^q \int_0^1 dt + \frac{1}{n+1} \eta \left(|f'(b)|^q, |f'(a)|^q \right) \int_0^1 (n+t) dt \right)^{\frac{1}{q}} \right\}.
\end{align*}

This gives the inequality (2.3) after simple calculations.

Now, from the assumption \(\alpha/k \in [0, 1] \), we have that

\[\left| x^{\frac{\alpha}{k}} - y^{\frac{\alpha}{k}} \right| \leq \left| x - y \right|^{\frac{\alpha}{k}} \text{ for all } x, y \in [0, 1]. \]

So, it follows that

\[\left| 2(1-t)^{\frac{\alpha}{k}} - t^{\frac{\alpha}{k}} \right| = 2 \left((1-t)^{\frac{\alpha}{k}} - \left(\frac{t}{2^{\frac{k}{p}}} \right)^{\frac{\alpha}{k}} \right) \leq 2 \left| 1 - \left(1 + \frac{1}{2^{\frac{k}{p}}} \right) t \right|^{\frac{\alpha}{k}}. \]

Thus,

\[C(\alpha, k, p) \leq \int_0^1 \left(2 \left| 1 - \left(1 + \frac{1}{2^{\frac{k}{p}}} \right) t \right|^{\frac{\alpha}{k}} \right)^p dt \]

\[= 2^p \left(\int_0^{Q(\alpha, k)} \left(1 - \left(\frac{2^{\frac{k}{p}} + 1}{2^{\frac{k}{p}}} \right) t \right)^{\frac{\alpha}{k}} dt + \int_{Q(\alpha, k)}^1 \left(\left(\frac{2^{\frac{k}{p}} + 1}{2^{\frac{k}{p}}} \right) t - 1 \right)^{\frac{\alpha}{k}} dt \right) \]

\[= 2^p \left(\frac{2^{\frac{k}{p}}}{\left(\frac{\alpha}{k} p + 1 \right) \left(\frac{2^{\frac{k}{p}}}{2^{\frac{k}{p}}} + 1 \right)} + \frac{2^{\frac{k}{p}}}{\left(\frac{\alpha}{k} p + 1 \right) \left(\frac{2^{\frac{k}{p}}}{2^{\frac{k}{p}}} + 1 \right)} \left(\frac{1}{2^{\frac{k}{p}}} \right)^{\frac{\alpha}{k} p+1} \right) \]

\[= \frac{2^{\frac{k}{p}}}{\left(\frac{\alpha}{k} p + 1 \right) \left(\frac{2^{\frac{k}{p}}}{2^{\frac{k}{p}}} + 1 \right)}. \]

This proves, in view of (2.3), the inequality (2.4).

\[\square \]

Remark 2.8. If \(k = 1 \), and \(\eta(x, y) = x - y \) in the inequality (2.3) of Theorem 2.7, then we recover [15, Theorem 2.3].

Acknowledgement

The author wishes to express his profound gratitude to the anonymous referee and the editors for their very useful comments and suggestions that has been implemented in the final version of the manuscript.
References

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, ALABAMA STATE UNIVERSITY, MONTGOMERY, AL 36101, USA
E-mail address: skermausou@alasu.edu