An entire function sharing fixed points with its linear differential polynomial

IMRUL KAISH AND INDRAJIT LAHiri

Abstract. We study the uniqueness of entire functions, when they share a linear polynomial, in particular, fixed points, with their linear differential polynomials.

1. Definitions and results

Let f be a nonconstant meromorphic function defined in the open complex plane \mathbb{C}, and let $a = a(z)$ be a polynomial. Let us denote by $E(a; f)$ and $\overline{E}(a; f)$ the set of zeros of $f - a$, counted with multiplicities, and the set of all distinct zeros of $f - a$, respectively. If $A \subset \mathbb{C}$, then we denote by $n_A(r, a; f)$ the number of zeros of $f - a$, counted with multiplicities, that lie in $\{z : |z| \leq r\} \cap A$. The corresponding integrated counting function is defined by

$$N_A(r, a; f) = \int_0^r \frac{n_A(t, a; f) - n_A(0, a; f)}{t} dt + n_A(0, a; f) \log r.$$

We also denote by $\overline{N}_A(r, a; f)$ the reduced counting functions of those zeros of $f - a$ that lie in $\{z : |z| \leq r\} \cap A$.

Clearly, if $A = \mathbb{C}$, then $N_A(r, a; f) = N(r, a; f)$ and $\overline{N}_A(r, a; f) = \overline{N}(r, a; f)$.

The standard definitions and notation of the value distribution theory are available in [1].

The uniqueness of an entire function sharing a nonzero finite value with its first two derivatives was considered by Jank et al. [2] in 1986. The following is their result.

Theorem A (see [2]). Let f be a nonconstant entire function and let a be a nonzero finite value. If $\overline{E}(a; f) = \overline{E}(a; f^{(1)}) \subset \overline{E}(a; f^{(2)})$, then $f \equiv f^{(1)}$.

Received March 14, 2017.

2010 Mathematics Subject Classification. 30D35.

Key words and phrases. Entire function; differential polynomial; fixed point; sharing.

http://dx.doi.org/10.12697/ACUTM.2018.22.11

125
Considering \(f = e^{\omega z} + \omega - 1 \) and \(a = \omega \), where \(\omega \) is a \((k - 1)\)th imaginary root of unity and \(k(\geq 3) \) is an integer, Zhong [10] pointed out that in Theorem A one can not replace the second derivative by any higher order derivative. Under this context, Zhong [10] proved the following theorem.

Theorem B (see [10]). Let \(f \) be a nonconstant entire function and let \(a \) be a nonzero finite number. If \(E(a; f) = E(a; f^{(1)}) \) and \(E(a; f) \subset \overline{E}(a; f^{(n)}) \cap E(a; f^{(n+1)}) \) for \(n \geq 1 \), then \(f \equiv f^{(n)} \).

Considering a shared linear polynomial, Lahiri and Ghosh [3] extended Theorem A in the following manner.

Theorem C (see [3]). Let \(f \) be a nonconstant entire function and let \(a(z) = \alpha z + \beta \), where \(\alpha(\neq 0), \beta \) are constants. If \(E(a; f) \subset E(a; f^{(1)}) \subset E(a; f^{(2)}) \), then either \(f = \lambda e^z \) or \(f = \alpha z + \beta + (\alpha z + \beta - 2\alpha) \exp\left(\frac{2z + \beta - 2\alpha}{\alpha}\right) \), where \(\lambda(\neq 0) \) is a constant.

In 1999, Li [7] considered linear differential polynomials and proved the following result.

Theorem D (see [7]). Let \(f \) be a nonconstant entire function and \(L = a_1 f^{(1)} + a_2 f^{(2)} + \cdots + a_n f^{(n)} \), where \(a_1, a_2, \ldots, a_n(\neq 0) \) are constants and \(a(\neq 0) \) is a finite number. If \(\overline{E}(a; f) = \overline{E}(a; f^{(1)}) \subset \overline{E}(a; L) \cap \overline{E}(a; L^{(1)}) \), then \(f \equiv f^{(1)} \equiv L \).

In this paper, we consider the uniqueness of an entire function that shares a linear polynomial with linear differential polynomials generated by it. For two subsets \(A \) and \(B \) of \(\mathbb{C} \), we denote by \(A \Delta B \) the set \((A - B) \cup (B - A)\), which is called the symmetric difference of the sets \(A \) and \(B \).

We now state the main result of the paper.

Theorem 1.1. Let \(f \) be a nonconstant entire function and \(L = a_1 f^{(1)} + a_2 f^{(2)} + \cdots + a_n f^{(n)} \), where \(a_2, a_3, \ldots, a_n(\neq 0) \) are constants and \(n(\geq 2) \) is a positive integer. Also, let \(a(z) = \alpha z + \beta \), where \(\alpha(\neq 0), \beta \) are constants. Suppose that \(A = \overline{E}(a; f) \Delta \overline{E}(a; f^{(1)}) \) and \(B = \overline{E}(a; f^{(1)}) \setminus \{\overline{E}(a; L) \cap \overline{E}(a; L^{(1)})\} \).

If the conditions
(i) \(N_A(r, a; f) + N_A(r, a; f^{(1)}) = O\{\log T(r, f)\} \),
(ii) \(N_B(r, a; f^{(1)}) = S(r, f) \),
(iii) each common zero of \(f - a \) and \(f^{(1)} - a \) has the same multiplicity, are satisfied, then \(f = L = \lambda e^z \), where \(\lambda(\neq 0) \) is a constant.

Putting \(A = B = \emptyset \), we obtain the following corollary which improves Theorem B for \(n \geq 2 \).

Corollary 1.1. Let \(f \) be a nonconstant entire function and \(L = a_1 f^{(1)} + a_2 f^{(2)} + \cdots + a_n f^{(n)} \), where \(a_2, a_3, \ldots, a_n(\neq 0) \) are constants and \(n(\geq 2) \) is an integer. Also let \(a(z) = \alpha z + \beta \), where \(\alpha(\neq 0), \beta \) are constants. Suppose
that $E(a; f) = E(a; f^{(1)})$ and $\overline{E}(a; f^{(1)}) \subset \{ \overline{E}(a; L) \cap \overline{E}(a; L^{(1)}) \}$. Then $f = L = \lambda e^z$, where $\lambda (\neq 0)$ is a constant.

The following examples show that the hypotheses (i) and (ii) of Theorem 1.1 are essential.

Example 1.1. Let $f(z) = e^z$, $L = f^{(2)} + f^{(3)}$ and $a(z) = z$. Then clearly $N_A(r, a; f) + N_A(r, a; f^{(1)}) = O\{ \log T(r, f) \}$ and $N_B(r, a; f^{(1)}) = T(r, f) + O(1) \neq S(r, f)$. Also we note that the hypothesis (iii) of Theorem 1.1 holds, but $f \neq L$.

Example 1.2. Let $f(z) = e^z + z^2$, $L = f^{(3)} + f^{(4)}$ and $a(z) = 2z$. Then clearly $N_A(r, a; f) + N_A(r, a; f^{(1)}) = T(r, e^z) + O(1) \neq O\{ \log T(r, f) \}$ and $N_B(r, a; f^{(1)}) = S(r, f)$. Since $E(a; f^{(1)}) = \emptyset$, we note that the hypothesis (iii) of Theorem 1.1 holds, but $f \neq L$.

We denote by $N_2(r, a; f)$ the counting function, counted with multiplicities, of the multiple zeros of $f - a$.

A related result concerning the derivatives of an entire function can be found in [4].

2. Lemmas

In this section, we present some lemmas.

Lemma 2.1 (see [9]). Let g be a transcendental entire function and let $\phi(\neq 0)$ be a meromorphic function satisfying $T(r, \phi) = S(r, g)$. Then

$$T(r, g) \leq C_n \{ N(r, 0; g) + \overline{N}(r, 0; g^{(n)} - \phi) \} + S(r, g),$$

where C_n is a constant depending only on $n (\geq 1)$.

Lemma 2.2. Let f be a transcendental entire function and let $a = a(z)$ be a meromorphic function satisfying $a - a^{(n)} \neq 0$ and $T(r, a) = S(r, f)$. Then

$$T(r, f) \leq C_n \{ N(r, a; f) + \overline{N}(r, a; f^{(n)}) \} + S(r, f),$$

where C_n is a constant depending only on $n (\geq 1)$.

Proof. Putting $g = f - a$ and $\phi = a - a^{(n)}$ in Lemma 2.1, we obtain the result. \qed

Lemma 2.3 (see [5]). Let f be transcendental entire function of finite order and let $a = a(z) = \alpha z + \beta$, where $\alpha (\neq 0), \beta$ are constants. Suppose that $A = \overline{E}(a; f) \Delta \overline{E}(a; f^{(1)})$. If $N_A(r, a; f) + N_A(r, a; f^{(1)}) = O\{ \log T(r, f) \}$ and each common zero of $f - a$ and $f^{(1)} - a$ have the same multiplicity, then $m(r, a; f) = m(r, \frac{1}{T-a}) = S(r, f)$.

To prove the following lemma, we adapt some techniques from [5].
Lemma 2.4. Let f be a transcendental entire function and $a(z) = \alpha z + \beta (\not\equiv 0)$. Suppose that
\[
L = a_2 f^{(2)} + a_3 f^{(3)} + \cdots + a_n f^{(n)} \quad \text{and} \quad h = \frac{(a - a^{(1)}) L - a (f^{(1)} - a^{(1)})}{f - a},
\]
where $a_2, a_3, \ldots, a_n (\not\equiv 0)$ are constants. Further, suppose that
\[
A = \overline{E}(a; f) \setminus \overline{E}(a; f^{(1)}) \quad \text{and} \quad B = \overline{E}(a; f^{(1)}) \setminus \{ \overline{E}(a; L) \cap \overline{E}(a; L^{(1)}) \}.
\]
If the conditions
(i) $N_A(r, a; f) + N_B(r, a; f^{(1)}) = S(r, f)$,
(ii) each common zero of $f - a$ and $f^{(1)} - a$ has the same multiplicity,
(iii) h is transcendental entire or meromorphic,
hold, then $m(r, a; f^{(1)}) = m\left(r, \frac{1}{f^{(1)} - a}\right) = S(r, f)$.

Proof. Since $a - a^{(1)} = (f^{(1)} - a^{(1)}) - (f^{(1)} - a)$, we have that if z_0 is a common zero of $f - a$ and $f^{(1)} - a$ with multiplicity $q \geq 2$, then z_0 is a zero of $a - a^{(1)}$ with multiplicity $q - 1$. So
\[
N_2(r, a; f) \leq 2N(r, 0; a - a^{(1)}) + N_A(r, a; f) = S(r, f).
\]

Hence, by the hypothesis, we see that
\[
N(r, h) \leq N_A(r, a; f) + N_B\left(r, a; f^{(1)}\right) + N_2(r, a; f) + S(r, f)
= S(r, f).
\]
Since $m(r, h) = S(r, f)$, we have $T(r, h) = S(r, f)$.

Now, by a simple calculation we get
\[
f = a + \frac{1}{h} \left\{ (a - a^{(1)}) (L - a) - a \left(f^{(1)} - a \right) \right\}.
\]
Differentiating, we obtain
\[
f^{(1)} = a^{(1)} + \left(\frac{1}{h} \right)^{(1)} \left\{ (a - a^{(1)}) (L - a) - a \left(f^{(1)} - a \right) \right\}
+ \left(\frac{1}{h} \right) \left\{ a^{(1)} (L - a) + (a - a^{(1)}) \left(L^{(1)} - a^{(1)} \right) - a^{(1)} \left(f^{(1)} - a \right) \right\}
- a \left(f^{(2)} - a^{(1)} \right) \right\}.
\]
This implies
\[
\frac{1}{f^{(1)} - a} = \frac{\xi}{\xi} - \frac{1}{\xi} \left(\frac{a - a^{(1)}}{h} \right)^{(1)} \frac{L - a_2 a^{(1)}}{f^{(1)} - a} - \frac{a - a^{(1)}}{h \xi} \frac{L^{(1)}}{f^{(1)} - a}
+ \frac{a}{h \xi} \frac{f^{(2)} - a^{(1)}}{f^{(1)} - a},
\]
(2.1)
where
\[\xi = 1 + \left(\frac{a}{h} \right)^{(1)} \quad \text{and} \quad \zeta = a^{(1)} - a - \left(\frac{a(a - a^{(1)})}{h} \right)^{(1)} + \left(\frac{a - a^{(1)}}{h} \right)^{(1)} a_2 a^{(1)}. \]

We now verify that \(\xi \not\equiv 0 \) and \(\zeta \not\equiv 0 \). If \(\xi \equiv 0 \), then \(1 + \left(\frac{a}{h} \right)^{(1)} \equiv 0 \). Integrating, we get \(h = \frac{a}{(c - z)} \), where \(c \) is a constant. This implies a contradiction as \(h \) is transcendental.

If \(\zeta \equiv 0 \), then \(a^{(1)} - a - \left(\frac{a(a - a^{(1)})}{h} \right)^{(1)} + \left(\frac{a - a^{(1)}}{h} \right)^{(1)} a_2 a^{(1)} \equiv 0 \), and so
\[(\alpha - \beta)z - \frac{\alpha^2}{2} + \alpha_2 = \frac{a(a - \alpha)}{h} - \frac{a_2 \alpha(a - \alpha)}{h}, \]
where \(\alpha_2 \) is a constant. Therefore,
\[h = \frac{(\alpha z + \beta - \alpha)(\alpha z + \beta - a_2 \alpha)}{-\frac{\alpha^2}{2} + (\alpha - \beta)z + \alpha_2}, \]
which is a contradiction as \(h \) is transcendental.

Since clearly \(T(r, \xi) + T(r, \zeta) = S(r, f) \), from (2.1) we get
\[m(r, a; f^{(1)}) = m \left(r, \frac{1}{f^{(1)} - a} \right) = S(r, f). \]
This proves the lemma. \(\square \)

Lemma 2.5 (see [6], p. 58). Each solution of the differential equation
\[a_n f^{(n)} + a_{n-1} f^{(n-1)} + \cdots + a_0 f = 0, \]
where \(a_0(\neq 0), a_1, \ldots, a_n(\neq 0) \) are polynomials, is an entire function of finite order.

Lemma 2.6 (see [1], p. 47). Let \(f \) be a nonconstant meromorphic function and let \(a_1, a_2, a_3 \) be three distinct meromorphic functions satisfying \(T(r, a_\nu) = S(r, f) \) for \(\nu = 1, 2, 3 \). Then
\[T(r, f) \leq N(r, 0; f - a_1) + N(r, 0; f - a_2) + N(r, 0; f - a_3) + S(r, f). \]

Lemma 2.7 (see [8], p. 92). Let \(f_1, f_2, \ldots, f_n \) be meromorphic functions which are nonconstant except possibly for \(f_n \), where \(n \geq 3 \). If \(f_n \neq 0 \), \(\sum_{j=1}^n f_j \equiv 1 \), and
\[\sum_{j=1}^n N(r, 0; f_j) + (n - 1) \sum_{j=1}^n N(r, \infty; f_j) < \{ \mu + o(1) \} T(r, f_k) \]
for \(k = 1, 2, \ldots, n - 1 \) and for some \(\mu(0 < \mu < 1) \), then \(f_n \equiv 1 \).
3. Proof of Theorem 1.1

Proof. First, we see that f can not be a polynomial. We suppose that f is a polynomial. Then $T(r, f) = O(\log r)$ and $N_A(r, a; f) + N_A(r, a; f^{(1)}) = O(\log T(r, f)) = S(r, f)$ imply $A = \emptyset$. Also $N_B(r, a; f^{(1)}) = S(r, f)$ implies $B = \emptyset$. Therefore,

$$E(a; f) = E\left(a; f^{(1)} \right) \quad \text{and} \quad \mathcal{E} \left(a; f^{(1)} \right) \subset \mathcal{E}(a, L) \cap \mathcal{E} \left(a; L^{(1)} \right).$$

Let the degree of f be greater than 1. Then $\deg(f - a) > \deg(f^{(1)} - a)$. Since each common zero of $f - a$ and $f^{(1)} - a$ has the same multiplicity, this contradicts the fact that $E(a; f) = E \left(a; f^{(1)} \right)$.

Next, let $f = A_1 z + B_1$, where $A_1(\neq 0), B_1$ are constants. Then $f^{(1)} = A_1$ and $L \equiv L^{(1)} \equiv 0$. Now, $(A_1 - \beta)/\alpha$ is the only zero of $f^{(1)} - a$, and $-\beta/\alpha$ is the only zero of $L - a$. Consequently, $\mathcal{E} \left(a; f^{(1)} \right) \subset \mathcal{E}(a, L)$ implies that $(A_1 - \beta)/\alpha = -\beta/\alpha$ and so $A_1 = 0$, a contradiction. Therefore f is a transcendental entire function.

Now

$$N_{(2)} \left(r, a; f^{(1)} \right) \leq N_A \left(r, a; f^{(1)} \right) + N_B \left(r, a; f^{(1)} \right)$$

$$+ N_{(2)} \left(r, a; f^{(1)} | f = a \right) + S(r, f) \quad (3.1)$$

$$= N_{(2)} \left(r, a; f^{(1)} | f = a \right) + S(r, f),$$

where $N_{(2)} \left(r, a; f^{(1)} | f = a \right)$ denotes the counting function (counted with multiplicities) of those multiple zeros of $f^{(1)} - a$, which are also zeros of $f - a$.

We note that a common zero of $f - a$ and $f^{(1)} - a$ of multiplicity $q(\geq 2)$ is a zero of $a - a^{(1)} = (f^{(1)} - a^{(1)}) - (f^{(1)} - a)$ with multiplicity $q - 1(\geq 1)$. Therefore,

$$N_{(2)} \left(r, a; f^{(1)} | f = a \right) \leq 2 N \left(r, 0; a - a^{(1)} \right) = S(r, f).$$

So, from (3.1) we get

$$N_{(2)} \left(r, a; f^{(1)} \right) = S(r, f). \quad (3.2)$$

First, we suppose that $L^{(1)} \neq f^{(1)}$. Then, using (3.2), we get by the hypothesis that

$$N \left(r, a; f^{(1)} \right) \leq N_B \left(r, a; f^{(1)} \right) + N \left(r, \frac{a}{a - \alpha}; \frac{L^{(1)}}{f^{(1)} - \alpha} \right) + S(r, f)$$

$$\leq T \left(r, \frac{L^{(1)}}{f^{(1)} - \alpha} \right) + S(r, f) = N \left(r, \frac{L^{(1)}}{f^{(1)} - \alpha} \right) + S(r, f) \quad (3.3)$$

$$\leq N \left(r, a; f^{(1)} \right) + S(r, f).$$
Again,
\[m(r, a; f) \leq m \left(r, \frac{f^{(1)} - \alpha}{f - a} \frac{1}{f^{(1)} - \alpha} \right) \leq m \left(r, \alpha; f^{(1)} \right) + S(r, f) \]
\[= T \left(r, f^{(1)} \right) - N \left(r, \alpha; f^{(1)} \right) + S(r, f) \]
\[= m \left(r, f^{(1)} \right) - N \left(r, \alpha; f^{(1)} \right) + S(r, f) \]
\[\leq m(r, f) - N \left(r, \alpha; f^{(1)} \right) + S(r, f) \]
\[= T(r, f) - N \left(r, \alpha; f^{(1)} \right) + S(r, f), \]
and so
\[N \left(r, \alpha; f^{(1)} \right) \leq N(r, a; f) + S(r, f). \]
Thus from (3.3) we get
\[N \left(r, a; f^{(1)} \right) \leq N(r, a; f) + S(r, f). \]
(3.4)

Again,
\[N(r, a; f) \leq N_A(r, a; f) + N \left(r, a; f^{(1)} \mid f = a \right) \]
\[\leq N \left(r, a; f^{(1)} \right) + S(r, f). \]
(3.5)

Therefore, from (3.4) and (3.5), we deduce that
\[N \left(r, a; f^{(1)} \right) = N(r, a; f) + S(r, f). \]
(3.6)

Let \(h \), defined as in Lemma 2.4, be transcendental. Then
\[T(r, f) = m(r, f) \leq m \left(r, \frac{1}{h} \left\{ \left(a - a^{(1)} \right) L - af^{(1)} \right\} \right) + S(r, f) \]
\[\leq m \left(r, f^{(1)} \right) + m \left(r, \left(a - a^{(1)} \right) \frac{L}{f^{(1)}} - a \right) + S(r, f) \]
\[\leq m \left(r, f^{(1)} \right) + S(r, f) = T \left(r, f^{(1)} \right) + S(r, f) \]
\[= m \left(r, f^{(1)} \right) + S(r, f) \leq m(r, f) + S(r, f) = T(r, f) + S(r, f). \]
Therefore,
\[T \left(r, f^{(1)} \right) = T(r, f) + S(r, f). \]
(3.7)

Again, by Lemma 2.4 we get \(m \left(r, a; f^{(1)} \right) = S(r, f) \). Then, from (3.6) and (3.7), we have that
\[m(r, a; f) + m \left(r, a; f^{(1)} \right) = S(r, f). \]
(3.8)
Next we suppose that \(h \) is rational. Then by Lemma 2.5 we see that \(f \) is of finite order. So, by the hypothesis and Lemma 2.3, we get the equality
\[m(r, a; f) = S(r, f). \]

Since
\[T(r, f^{(1)}) = m(r, f^{(1)}) \leq m(r, f) + S(r, f) = T(r, f) + S(r, f), \]
from (3.6) we get
\[m(r, a; f^{(1)}) \leq m(r, a; f) + N(r, a; f) - N(r, a; f^{(1)}) + S(r, f) = S(r, f). \]

Hence in this case also we obtain (3.8).

We now put
\[\phi = \frac{f^{(1)} - a}{f - a} \quad \text{and} \quad \psi = \frac{L - a}{f^{(1)} - a}. \]

Then by (3.8) we get \(m(r, \phi) + m(r, \psi) = S(r, f) \). Also, from the hypothesis we have
\[N(r, \phi) \leq N_A(r, a; f) + N_B(r, a; f^{(1)}) + N_{(2)}(r, a; f) + S(r, f) = S(r, f), \]

because
\[N_{(2)}(r, a; f) \leq N_A(r, a; f) + 2N(r, 0; a - a^{(1)}) + S(r, f) = S(r, f). \]

Again, by (3.2) and the hypothesis, we get
\[N(r, \psi) \leq N_A(r, a; f) + N_B(r, a; f^{(1)}) + N_{(2)}(r, a; f^{(1)}) + S(r, f) = S(r, f). \]

Therefore,
\[T(r, \phi) + T(r, \psi) = S(r, f). \quad (3.9) \]

Let \(z_1 \) be a simple zero of \(f - a \) such that \(z_1 \notin A \cup B \) and \(a(z_1) - a^{(1)}(z_1) \neq 0 \). Then \(f(z_1) = f^{(1)}(z_1) = L(z_1) = L^{(1)}(z_1) = a(z_1) \). Now, by Taylor’s expansion in some neighbourhood of \(z_1 \), we get
\[
\begin{align*}
f(z) - a(z) &= (f - a)(z_1) + (f - a)^{(1)}(z_1)(z - z_1) + O(z - z_1)^2 \\
&= \left(a(z_1) - a^{(1)}(z_1)\right)(z - z_1) + O(z - z_1)^2,
\end{align*}
\]
\[
\begin{align*}
f^{(1)}(z) - a(z) &= \left(f^{(1)} - a\right)(z_1) + \left(f^{(1)} - a\right)^{(1)}(z_1)(z - z_1) + O(z - z_1)^2 \\
&= \left(f^{(2)}(z_1) - a^{(1)}(z_1)\right)(z - z_1) + O(z - z_1)^2
\end{align*}
\]
and
\[
\begin{align*}
L(z) - a(z) &= (L - a)(z_1) + (L - a)^{(1)}(z_1)(z - z_1) + O(z - z_1)^2 \\
&= \left(a(z_1) - a^{(1)}(z_1)\right)(z - z_1) + O(z - z_1)^2.
\end{align*}
\]
Therefore, in a neighbourhood of z_1, we obtain

$$
\phi(z) = \frac{\left\{ f^{(2)}(z_1) - a^{(1)}(z_1) \right\} (z - z_1) + O(z - z_1)^2}{(a(z_1) - a^{(1)}(z_1)) (z - z_1) + O(z - z_1)^2}
$$

$$
= \frac{f^{(2)}(z_1) - \alpha + O(z - z_1)}{a(z_1) - \alpha + O(z - z_1)} = \frac{f^{(2)}(z_1) - \alpha}{a(z_1) - \alpha} + O(z - z_1)
$$

(3.10)

and

$$
\psi(z) = \frac{(a(z_1) - a^{(1)}(z_1)) (z - z_1) + O(z - z_1)^2}{(f^{(2)}(z_1) - a^{(1)}(z_1)) (z - z_1) + O(z - z_1)^2}
$$

$$
= \frac{a(z_1) - \alpha + O(z - z_1)}{f^{(2)}(z_1) - \alpha + O(z - z_1)} = \frac{a(z_1) - \alpha}{f^{(2)}(z_1) - \alpha} + O(z - z_1).
$$

(3.11)

We put $M = \psi - 1/\phi$. Then from (3.9) we get $T(r, M) = S(r, f)$. Also, in some neighbourhood of z_1, we have, by (3.10) and (3.11), that $M(z) = O(z - z_1)$.

If $M \equiv 0$, then

$$
\overline{N}(r; a; f) \leq N_A(r, a; f) + N_B \left(r, a; f^{(1)} \right) + N_2(r, a; f)
$$

$$
+ N(r, 0; a - a^{(1)}) + N(r, 0; M)
$$

$$
= S(r, f),
$$

and so, by (3.6) and Lemma 2.2, we have $T(r, f) = S(r, f)$, a contradiction. Thus $M \equiv 0$ and so

$$
L \equiv f.
$$

(3.12)

Differentiating (3.12) we get $L^{(1)} \equiv f^{(1)}$, which contradicts our hypothesis that $L^{(1)} \neq f^{(1)}$. Therefore, indeed we have $L^{(1)} \equiv f^{(1)}$.

Next we suppose that $L^{(1)} \neq L$. Then, by the hypothesis and (3.2), we get

$$
N \left(r, a; f^{(1)} \right) \leq N_B \left(r, a; f^{(1)} \right) + N \left(r, 1; \frac{L^{(1)}}{L} \right) + S(r, f)
$$

$$
\leq T \left(r, \frac{L^{(1)}}{L} \right) + S(r, f) = N \left(r, \frac{L^{(1)}}{L} \right) + S(r, f)
$$

(3.13)

$$
= \overline{N}(r, 0; L) + S(r, f).
$$

Again,

$$
m(r, a; f) = m \left(r, \frac{L}{f - a} \right) \leq m(r, 0; L) + S(r, f)
$$

$$
= T(r, L) - N(r, 0; L) + S(r, f) = m(r, L) - N(r, 0; L) + S(r, f)
$$
\[
\begin{align*}
\leq m\left(\frac{r, L}{f}\right) + m(r, f) - N(r, 0; L) + S(r, f) \\
= m(r, f) - N(r, 0; L) + S(r, f) = T(r, f) - N(r, 0; L) + S(r, f)
\end{align*}
\]

and so
\[
N(r, 0; L) \leq N(r, a; f) + S(r, f).
\]

Now, by (3.13) we get
\[
N\left(r, a; f^{(1)}\right) \leq N\left(r, a; f\right) + S(r, f) \tag{3.14}
\]

Also,
\[
N\left(r, a; f\right) \leq N_A\left(r, a; f\right) + N\left(r, a; f^{(1)} \mid f = a\right) \leq N\left(r, a; f^{(1)}\right) + S(r, f) \tag{3.15}
\]

From (3.14) and (3.15) we get (3.6).

Now, using Lemmas 2.3–2.5 and (3.6), we similarly obtain (3.8). Further, using \(\phi\) and \(\psi\) and proceeding likewise, we get (3.12).

Solving \(L - f \equiv 0\), we find that
\[
f = c_1 e^{\alpha_1 z} + c_2 e^{\alpha_2 z} + \cdots + c_k e^{\alpha_k z}, \tag{3.16}
\]

where \(\alpha_1, \alpha_2, \ldots, \alpha_k\) are the roots of \(\sum_{j=2}^{n} a_j z^j = 1\) and \(c_1, c_2, \ldots, c_k\) are constants or polynomials, not all identically zero, and \(k(\leq n)\) is an integer.

Differentiating (3.16), we get
\[
f^{(1)} = \left(c_1^{(1)} + c_1 \alpha_1\right) e^{\alpha_1 z} + \left(c_2^{(1)} + c_2 \alpha_2\right) e^{\alpha_2 z} + \cdots + \left(c_k^{(1)} + c_k \alpha_k\right) e^{\alpha_k z}. \tag{3.17}
\]

From (3.16), (3.17), and \(\phi = \left(f^{(1)} - a\right)/(f - a)\), we get
\[
\begin{align*}
\left(\phi c_1 - c_1^{(1)} - c_1 \alpha_1\right) e^{\alpha_1 z} + \left(\phi c_2 - c_2^{(1)} - c_2 \alpha_2\right) e^{\alpha_2 z} + \cdots + \\
+ \left(\phi c_k - c_k^{(1)} - c_k \alpha_k\right) e^{\alpha_k z} &\equiv a(\phi - 1).
\end{align*}
\]

We suppose that \(\phi \neq 1\). Then, from the above, we have
\[
\sum_{j=1}^{k} \frac{\phi c_j - c_j^{(1)} - c_j \alpha_j}{a(\phi - 1)} e^{\alpha_j z} = 1. \tag{3.18}
\]

We note that \(T(r, f) = O(T(r, e^{\alpha_j z}))\) for \(j = 1, 2, \ldots, k\).

If the left hand side of (3.18) contains more than two terms, then by Lemma 2.7 we get
\[
\frac{\phi c_j - c_j^{(1)} - c_j \alpha_j}{a(\phi - 1)} e^{\alpha_j z} \equiv 1 \tag{3.19}
\]

for one value of \(j \in \{1, 2, \ldots, k\}\). From (3.19) we see that \(T(r, e^{\alpha_j z}) = S(r, f) = S(r, e^{\alpha_j z})\), a contradiction.
We now suppose that the left hand side of (3.18) contains only two terms, say,
\[
\phi c_j - c_j^{(1)} - c_j \alpha_j \frac{a}{a(\phi - 1)} e^{\alpha_j z} + \phi c_l - c_l^{(1)} - c_l \alpha_l \frac{a}{a(\phi - 1)} e^{\alpha_l z} \equiv 1.
\]
By Lemma 2.6 we get
\[
T(r, e^{\alpha_j z}) \leq N(r, 0; e^{\alpha_j z}) + N(r, \infty; e^{\alpha_j z})
\]
\[
+ N\left(r, \frac{a(\phi - 1)}{\phi c_j - c_j^{(1)} - c_j \alpha_j}; e^{\alpha_j z}\right) + S(r, e^{\alpha_j z})
\]
\[
= N(r, 0; e^{\alpha_j z}) + S(r, e^{\alpha_j z}) = S(r, e^{\alpha_j z}),
\]
a contradiction.

Finally, we suppose that the left hand side of (3.18) contains only one term, say,
\[
\phi c_j - c_j^{(1)} - c_j \alpha_j \frac{a}{a(\phi - 1)} e^{\alpha_j z} \equiv 1.
\]
Then \(T(r, e^{\alpha_j z}) = S(r, f) = S(r, e^{\alpha_j z})\), a contradiction.

Therefore, \(\phi \equiv 1\) and so \(f^{(1)} \equiv f\). Hence, by (3.12) we get \(L \equiv L^{(1)}\), a contradiction to the supposition. Thus, indeed, we have \(L \equiv L^{(1)}\).

Now \(L \equiv L^{(1)} \equiv f^{(1)}\) implies \(L = L^{(1)} = f^{(1)} = \lambda e^z\), where \(\lambda \neq 0\) is a constant. Therefore \(f = \lambda e^z + K\), where \(K\) is a constant. By Lemma 2.6 we get
\[
T(r, \lambda e^z) \leq N(r, 0; \lambda e^z) + N(r, \infty; \lambda e^z) + N(r, a - K; \lambda e^z) + S(r, \lambda e^z)
\]
\[
= N(r, a; f) + S(r, \lambda e^z),
\]
which implies \(N(r, a; f) \neq S(r, f)\). Again, since
\[
N_A(r, a; f) + N_B\left(r, a; f^{(1)}\right) = S(r, f),
\]
we get
\[
\overline{E}(a; f) \cap \overline{E}\left(a; f^{(1)}\right) \neq \emptyset.
\]
But this implies \(K = 0\) and so \(f = L = \lambda e^z\). The proof is complete. \(\square\)

Acknowledgement

The authors are thankful to the referees for their valuable suggestions towards the improvement of the paper.
References

Department of Mathematics, Aliah University, Kolkata, West Bengal 700156, India
E-mail address: imrulksh3@gmail.com

Department of Mathematics, University of Kalyani, West Bengal 741235, India
E-mail address: ilahiri@hotmail.com