Semi-symmetric metric connections on pseudosymmetric Lorentzian α-Sasakian manifolds

A. Bhattacharyya and C. Patra

Abstract. We consider semi-symmetric metric connections on pseudosymmetric Lorentzian α-Sasakian manifolds. We study some properties of Weyl pseudosymmetric and Ricci pseudosymmetric Lorentzian α-Sasakian manifolds. We also give an example of a pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection.

1. Introduction

The concept of a pseudosymmetric manifold was introduced by M.C. Chaki and B. Chaki (see [3]) and R. Deszcz (see [8]) in two different ways. Various properties of pseudosymmetric manifolds in various metric structures have been studied in both senses (see [3] – [7]). The two types of pseudosymmetric manifolds are different in their nature. We shall study properties of pseudosymmetric manifolds and Ricci pseudosymmetric manifolds with a semi-symmetric metric connection in the Deszcz sense.

A Riemannian manifold (M, g) of dimension n is called pseudosymmetric if the Riemannian curvature tensor R satisfies, for all vector fields X,Y,U,V,W on M, the conditions (see [1])

Received November 29, 2012.
2010 Mathematics Subject Classification. 53B30, 53C15, 53C25.
Key words and phrases. Lorentzian α-Sasakian manifold, semi-symmetric metric connection, pseudosymmetric Lorentzian α-Sasakian manifold, Weyl pseudosymmetric, Ricci pseudosymmetric, η-Einstein manifold.

http://dx.doi.org/10.12097/ACUTM.2014.18.17
where \(L_R \in C^\infty(M) \),
\[
R(X, Y)Z = \nabla_{[X,Y]}Z - [\nabla_X; \nabla_Y]Z,
\]

and \(X \wedge Y \) is an endomorphism which is defined by
\[
(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y.
\] (1)

The manifold \(M \) is said to be \textit{pseudosymmetric of constant type} if \(L \) is constant. A Riemannian manifold \((M, g)\) is called \textit{semi-symmetric} if \(R.R = 0 \), where \(R.R \) is the derivative of \(R \) by \(R \).

\textbf{Remark 1.1.} From [2] and [8], we know that, for a \((0, k)\)-tensor field \(T \), the \((0, k + 2)\)-tensor fields \(R.T \) and \(Q(g, T) \) are defined by
\[
(R.T)(X_1, \ldots, X_k; X, Y) = (R(X, Y).T)(X_1, \ldots, X_k)
= -T(R(X, Y)X_1, \ldots, X_k) - \cdots - T(X_1, \ldots, R(X, Y)X_k)
\]

and
\[
Q(g, T)(X_1, \ldots, X_k; X, Y) = -((X \wedge Y).T)(X_1, \ldots, X_k)
= T((X \wedge Y)X_1, \ldots, X_k) + \cdots + T(X_1, \ldots, (X \wedge Y)X_k).
\]

Let \(S \) and \(r \) denote the Ricci tensor and the scalar curvature tensor of \(M \) respectively. The operator \(Q \) and the \((0, 2)\)-tensor \(S^2 \) are defined by
\[
S(X, Y) = g(QX, Y)
\]

and
\[
S^2(X, Y) = S(QX, Y). \] (2)

The Weyl conformal curvature operator \(C \) is defined by
\[
C(X, Y) = R(X, Y) - \frac{1}{n - 2} \left[X \wedge QY + QX \wedge Y - \frac{r}{n - 1} X \wedge Y \right].
\]

If \(C = 0 \), \(n \geq 3 \), then \(M \) is called \textit{conformally flat}. If the tensors \(R.C \) and \(Q(g, C) \) are linearly dependent, then \(M \) is called \textit{Weyl pseudosymmetric}. This is equivalent to the statement that
\[
\]

holds on the set
\[
U_C = \{ x \in M : C \neq 0 \text{ at } x \},
\]

where \(L_C \) is defined on \(U_C \). If \(R.C = 0 \), then \(M \) is called \textit{Weyl semi-symmetric}. If \(\nabla C = 0 \), then \(M \) is called \textit{conformally symmetric} (see [10], [9]).
2. Preliminaries

A differentiable manifold M of dimension n is said to be a Lorentzian α-Sasakian manifold if it admits a $(1,1)$-tensor field ϕ, a vector field ξ, a one-form η, and Lorentzian metric g which satisfy the conditions

$$\phi^2 = I + \eta \otimes \xi,$$
$$\eta(\xi) = -1, \quad \phi \xi = 0, \quad \eta \circ \phi = 0,$$
$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),$$
$$g(X, \xi) = \eta(X),$$
$$(\nabla_X \phi)(Y) = \alpha \{g(X, Y)\xi + \eta(Y)X\},$$

for all $X, Y \in \chi(M)$, where $\chi(M)$ is the Lie algebra of smooth vector fields on M, α is smooth functions on M, and ∇ denotes the covariant differentiation operator of Lorentzian metric g (see [11], [10]).

On a Lorentzian α-Sasakian manifold, it can be shown that (see [11], [10])

$$\nabla_X \xi = \alpha \phi X,$$
$$\nabla_Y \eta = \alpha g(\phi X, Y).$$

Moreover, on a Lorentzian α-Sasakian manifold the following relations hold (see [10]):

$$\eta(R(X, Y)Z) = \alpha^2 [g(Y, Z)\eta(X) - g(X, Z)\eta(Y)],$$
$$R(\xi, X)Y = \alpha^2 [g(X, Y)\xi - \eta(Y)X],$$
$$R(X, Y)\xi = \alpha^2 [\eta(Y)X - \eta(X)Y],$$
$$S(\xi, X) = S(X, \xi) = (n - 1)\alpha^2 \eta(X),$$
$$S(\xi, \xi) = -(n - 1)\alpha^2,$$
$$Q\xi = (n - 1)\alpha^2 \xi.$$

The equalities (4) – (8) will be required in the next section.

3. Semi-symmetric metric connection on a Lorentzian α-Sasakian manifold

Let M be a Lorentzian α-Sasakian manifold with Levi–Civita connection ∇ and let $X, Y, Z \in \chi(M)$. We define a linear connection D on M by

$$D_X Y = \nabla_X Y + \eta(Y)X - g(X, Y)\xi,$$

where η is 1-form and ϕ is a tensor field of type $(1,1)$. The connection D is said to be semi-symmetric if \tilde{T}, the torsion tensor of the connection D, satisfies

$$\tilde{T}(X, Y) = \eta(Y)X - \eta(X)Y,$$
and metric if
\[(D_X g)(Y, Z) = 0.\] \(\text{(11)}\)

The connection \(D\) is said to be semi-symmetric metric if it satisfies (9), (10) and (11).

We shall show the existence of a semi-symmetric metric connection \(D\) on a Lorentzian \(\alpha\)-Sasakian manifold \(M\).

Theorem 3.1. Let \(X, Y, Z\) be vector fields on a Lorentzian \(\alpha\)-Sasakian manifold \(M\). Define a connection \(D\) by
\[2g(D_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) + g([X, Y], Z) - g([Y, Z], X) + g([Z, X], Y) + g(\eta(Y)X - \eta(X)Y, Z) \quad (12)\]
\[+ g(\eta(X)Z - \eta(Z)X, Y) + g(\eta(Y)Z - \eta(Z)Y, X).\]

Then \(D\) is a semi-symmetric metric connection on \(M\).

Proof. It can be verified that \(D\) is a linear connection on \(M\). From (12), we have
\[g(D_X Y, Z) - g(D_Y X, Z) = g([X, Y], Z) + \eta(Y)g(X, Z) - \eta(X)g(Y, Z)\]
or
\[D_X Y - D_Y X - [X, Y] = \eta(Y)X - \eta(X)Y\]
or
\[T(X, Y) = \eta(Y)X - \eta(X)Y.\]
Again, from (12), we get
\[2g(D_X Y, Z) + 2g(D_Z X, Y) = 2Xg(Y, Z)\]
or
\[(D_X g)(Y, Z) = 0.\]
This shows that \(D\) is a semi-symmetric metric connection on \(M\). \(\square\)

4. Curvature tensor and Ricci tensor of semi-symmetric metric connection \(D\) on a Lorentzian \(\alpha\)-Sasakian manifold

Let \(\bar{R}(X, Y)Z\) and \(R(X, Y)Z\) be the curvature tensors on a Lorentzian \(\alpha\)-Sasakian manifold \(M\) of a semi-symmetric metric connection \(D\) and of the Riemannian connection \(\nabla\), respectively. A relation between \(\bar{R}(X, Y)Z\) and \(R(X, Y)Z\) is given by
\[
\bar{R}(X, Y)Z = R(X, Y)Z + \alpha [g(\phi X, Z)Y - g(\phi Y, Z)X + g(X, Z)\phi Y - g(Y, Z)\phi X] + \eta(Z) [\eta(Y)X - \eta(X)Y]\]
\[+ g(Y, Z)\phi^2 X - g(X, Z)\phi^2 Y.\] \(\text{(13)}\)

From (13) we obtain
\[
\bar{S}(X, Y) = S(X, Y) + (n - 2) [g(\phi X, \phi Y) - \alpha g(\phi X, Y)],\] \(\text{(14)}\)
where \bar{S} and S are the Ricci tensors of the connections D and ∇, respectively. Again
\[
\bar{S}^2(X,Y) = S^2(X,Y) + (n-2) \left[\{S(\phi X, \phi Y) + S(\phi^2 X, Y)\}
- 2\alpha S(\phi X, Y) \right] + (n-2)^2 \left[(\alpha^2 + 1)g(\phi X, \phi Y) \right.
- 2\alpha g(\phi X, Y) \bigg].
\] (15)
Contracting (15), we get
\[
\bar{r} = r + (n-1)(n-2),
\] (16)
where \bar{r} and r are the scalar curvatures of the connections D and ∇, respectively.

Let \bar{C} be the conformal curvature tensor of the connection D. Then
\[
\bar{C}(X,Y)Z = \bar{R}(X,Y)Z - \frac{1}{n-2} [\bar{S}(Y,Z)X - g(X,Z)\bar{Q}Y + g(Y,Z)\bar{Q}X - \bar{S}(X,Z)Y] + \frac{(n-1)(n-2)}{2} [g(Y,Z)X - g(X,Z)Y],
\] (17)
where \bar{Q} is the Ricci operator of the connection D on M and
\[
\bar{S}(X,Y) = \bar{S}(\bar{Q}X,Y),
\] (18)
\[
\bar{S}^2(X,Y) = \bar{S}(\bar{Q}X,Y).
\] (19)

Now we shall prove the following theorem.

Theorem 4.1. Let M be a Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D. Then the following relations hold:
\[
\bar{R}(\xi,X)Y = \alpha^2 \left[g(X,Y)\xi - \eta(Y)X \right] = \alpha \left[\eta(Y)\phi X - g(\phi X, Y)\xi \right],
\] (20)
\[
\eta(\bar{R}(X,Y)Z) = \alpha^2 \left[g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \right] + \alpha \left[g(\phi X, Z)\eta(Y) - g(\phi Y, Z)\eta(X) \right],
\] (21)
\[
\bar{R}(X,Y)\xi = \alpha^2 \left[\eta(Y)X - \eta(X)Y \right] - \alpha \left[\eta(Y)\phi X - \eta(X)\phi Y \right],
\] (22)
\[
\bar{S}(X,\xi) = \bar{S}(\xi, X) = (n-1)\alpha^2 \eta(X),
\] (23)
\[
\bar{S}^2(X,\xi) = \bar{S}^2(\xi, X) = \alpha^4 (n-1)^2 \eta(X),
\] (24)
\[
\bar{S}(\xi,\xi) = -(n-1)\alpha^2,
\] (25)
\[
\bar{Q}X = QX + (n-2) \left[\phi^2 X - \alpha \phi X \right],
\] (26)
\[
\bar{Q}\xi = (n-1)\alpha^2 \xi.
\] (27)

Proof. Since M is a Lorentzian α-Sasakian manifold and D is a semi-symmetric metric connection, replacing $X = \xi$ in (13) and using (3) and (5), we get (20). Using (3) and (4), from (13), we get (21). To prove (22), we put $Z = \xi$ in (13) and then we use (6). Replacing $Y = \xi$ in (14) and using
(7), we get (23). Putting $Y = \xi$ in (15) and using (2) and (7), we get (24). Again, putting $X = Y = \xi$ in (14) and using (8), we get (25). Using (18) and (23), we get (26). Now, putting $X = \xi$ in (26), we get (27). □

5. Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D satisfying the condition $\bar{C}\bar{S} = 0$

In this section we shall find out characterization of Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D satisfying the condition $\bar{C}\bar{S} = 0$, where

\[
\bar{C}(X,Y)\bar{S}(Z,W) = -\bar{S}(\bar{C}(X,Y)Z,W) - \bar{S}(Z,\bar{C}(X,Y)W)
\]

with $X, Y, Z, W \in \chi(M)$.

Theorem 5.1. Let M be an n-dimensional Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D. If $\bar{C}\bar{S} = 0$, then

\[
\frac{1}{n-2}\bar{S}^2(X,Y) = \left[\alpha^2 + 1 + \frac{r}{(n-1)(n-2)} \right] \left[\bar{S}(\phi X,Y) - \alpha^2(n-1)g(\phi X,Y) \right]
\]

\[
- \frac{\alpha^2(n-1)g(\phi X,Y)}{n-2} + \frac{\alpha^4(n-1)^2}{n-2}g(X,Y).
\]

Proof. From (28), we get

\[
\bar{S}(\bar{C}(X,Y)Z,W) + \bar{S}(Z,\bar{C}(X,Y)W) = 0,
\]

where $X, Y, Z, W \in \chi(M)$. Now, putting $X = \xi$ in (29), we get

\[
\bar{S}(\bar{C}(\xi,X)Y,Z) + \bar{S}(Y,\bar{C}(\xi,X)Z) = 0.
\]

Using (17), (19), (20) and (23), we have that

\[
\bar{S}(\bar{C}(\xi,X)Y,Z) = \left[\alpha^2 - \frac{(n-1)\alpha^2}{n-2} + \frac{\bar{r}}{(n-1)(n-2)} \right]
\]

\[
\times \left[(n-1)\alpha^2\eta(Z)g(X,Y) - \eta(Y)\bar{S}(X,Z) \right]
\]

\[- \alpha \left[(n-1)\alpha^2\eta(Z)g(\phi X,Y) - \eta(Y)\bar{S}(\phi X,Z) \right]
\]

\[- \frac{1}{n-2} \left[(n-1)\alpha^2\eta(Z)\bar{S}(X,Y) - \bar{S}^2(X,Z)\eta(Y) \right],
\]

and

\[
\bar{S}(Y,\bar{C}(\xi,X)Z) = \left[\alpha^2 - \frac{(n-1)\alpha^2}{n-2} + \frac{\bar{r}}{(n-1)(n-2)} \right]
\]

\[
\times \left[(n-1)\alpha^2\eta(Y)g(X,Z) - \eta(Z)\bar{S}(X,Y) \right]
\]

\[- \alpha \left[(n-1)\alpha^2\eta(Y)g(\phi X,Z) - \eta(Z)\bar{S}(\phi X,Y) \right]
\]

\[- \frac{1}{n-2} \left[(n-1)\alpha^2\eta(Y)\bar{S}(X,Z) - \bar{S}^2(X,Y)\eta(Z) \right].
\]
Using (31) and (32) in (30), we get
\[
\alpha^2 - \frac{(n-1)\alpha^2}{n-2} + \frac{\bar{r}}{(n-1)(n-2)} \left[(n-1)\alpha^2 \{\eta(Z)g(X,Y) + \eta(Y)g(X,Z) \} \right.
\]
\[
+ \eta(Y)g(X,Z) \} - \left\{ \eta(Y)\bar{S}(X,Z) + \eta(Z)\bar{S}(X,Y) \right\} \right]
\]
\[
- \alpha \left[(n-1)\alpha^2 \{\eta(Z)g(\phi X,Y) + \eta(Y)g(\phi X,Z) \} \right.
\]
\[
- \{\eta(Y)\bar{S}(\phi X,Z) + \eta(Z)\bar{S}(\phi X,Y) \} \right]
\]
\[
- \frac{1}{n-2} \left[(n-1)\alpha^2 \{\eta(Z)\bar{S}(X,Y) + \eta(Y)\bar{S}(X,Z) \} \right.
\]
\[
- \{\bar{S}^2(X,Z)\eta(Y) + \bar{S}^2(X,Y)\eta(Z) \} \right] = 0.
\]
Finally, replacing \(Z = \xi \) in (33) and using (23) and (24), we get (29). \(\square \)

An \(n \)-dimensional Lorentzian \(\alpha \)-Sasakian manifold \(M \) with a semi-symmetric metric connection \(D \) is said to be \(\eta \)-Einstein if its Ricci tensor \(\bar{S} \) is of the form
\[
\bar{S}(X,Y) = Ag(X,Y) + B\eta(X)\eta(Y),
\]
where \(A, B \) are smooth functions on \(M \). We consider the vector fields \(e_i, i = 1, 2, \ldots, n \), which forms an orthonormal basis for the tangent space \(T_x M \) of \(M \).

Now, putting \(X = Y = e_i, i = 1, 2, \ldots, n, \) in (35) and summing over \(i = 1, \ldots, n, \) we get
\[
An - B = \bar{r}.
\]
Again, replacing \(X = Y = \xi \) in (35), we have that
\[
A - B = (n-1)\alpha^2.
\]
Solving (36) and (37), we obtain
\[
A = \frac{\bar{r}}{n-1} - \alpha^2 \quad \text{and} \quad B = \frac{\bar{r}}{n-1} - n\alpha^2.
\]
Thus the Ricci tensor of an \(\eta \)-Einstein manifold with a semi-symmetric metric connection \(D \) is given by
\[
\bar{S}(X,Y) = \left[\frac{\bar{r}}{n-1} - \alpha^2 \right] g(X,Y) + \left[\frac{\bar{r}}{n-1} - n\alpha^2 \right] \eta(X)\eta(Y).
\]

6. \(\eta \)-Einstein Lorentzian \(\alpha \)-Sasakian manifold with a semi-symmetric metric connection \(D \) satisfying the condition \(\bar{C}.\bar{S} = 0 \)

Theorem 6.1. Let \(M \) be an \(\eta \)-Einstein Lorentzian \(\alpha \)-Sasakian manifold of dimension \(n \) with the restriction \(X = Z = \xi \). Then \(\bar{C}.\bar{S} = 0 \) if and only if
\[
g(\phi Y,\phi W) = -\alpha g(\phi Y,W), \quad Y,W \in \chi(M).
\]
Proof. Let M be an η-Einstein Lorentzian α-Sasakian manifold of the semi-symmetric metric connection D satisfying $\bar{C}.\bar{S} = 0$. Using (38) in (30), we get
\[\eta(\bar{C}(X,Y)Z)\eta(W) + \eta(\bar{C}(X,Y)W)\eta(Z) = 0. \]
Further, using (16), (21) and (23) in the above equation, we obtain that
\[
\{ g(Y,Z)\eta(X)\eta(W) - g(X,Z)\eta(Y)\eta(W) \\
+ g(Y,W)\eta(X)\eta(Z) - g(X,W)\eta(Y)\eta(Z) \\
- \alpha\{ g(\phi Y,Z)\eta(X)\eta(W) - g(\phi X,Z)\eta(Y)\eta(W) \\
+ g(\phi Y,W)\eta(X)\eta(Z) - g(\phi X,W)\eta(Y)\eta(Z) \} = 0.
\]
Putting here $X = Z = \xi$, we get
\[g(\phi Y,\phi W) = -\alpha g(\phi Y,W). \]
Conversely,
\[\bar{C}.\bar{S} = \{ g(Y,Z)\eta(X)\eta(W) - g(X,Z)\eta(Y)\eta(W) \\
+ g(Y,W)\eta(X)\eta(Z) - g(X,W)\eta(Y)\eta(Z) \\
- \alpha\{ g(\phi Y,Z)\eta(X)\eta(W) - g(\phi X,Z)\eta(Y)\eta(W) \\
+ g(\phi Y,W)\eta(X)\eta(Z) - g(\phi X,W)\eta(Y)\eta(Z) \}. \]
Using $X = Z = \xi$ in this equation, we get
\[\bar{C}.\bar{S} = g(Y,W) + \eta(Y)\eta(W) + \alpha g(\phi Y,W). \]
Thus $\bar{C}.\bar{S} = 0$. \square

7. Ricci pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D

Theorem 7.1. A Ricci pseudosymmetric Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D and with restrictions $Y = W = \xi$, $L_{\bar{S}} = \alpha^2$ is an Einstein manifold.

Proof. Recall that a Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D is called Ricci pseudosymmetric if
\[(\bar{R}(X,Y).\bar{S})(Z,W) = L_{\bar{S}} \left[((X \wedge Y).\bar{S}))(Z,W) \right] \]
or
\[\bar{S}(\bar{R}(X,Y)Z,W) + \bar{S}(Z,\bar{R}(X,Y)W) = L_{\bar{S}} \left[\bar{S}((X \wedge Y)Z,W) + \bar{S}(Z,(X \wedge Y)W) \right]. \]
Putting $Y = W = \xi$, in (39) and using (1), (20) and (23), we have
\[
\begin{align*}
[L_{\bar{S}} - \alpha^2] \left[\bar{S}(Z,X) - (n-1)\alpha^2 g(Z,X) \right] \\
= -\alpha \left[\bar{S}(Z,\phi X) - (n-1)\alpha^2 g(Z,\phi X) \right].
\end{align*}
\]
Then, for $L_{\bar{S}} = \alpha^2$,
\[\bar{S}(Z, \phi X) = (n - 1)\alpha^2 g(Z, \phi X). \]
Thus M is an Einstein manifold.

Corollary 7.1. If M is a Ricci pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D and with restriction $Y = W = \xi$, then
\[\alpha \left[\bar{S}(Z, X) - (n - 1)\alpha^2 g(Z, X) \right] = \bar{S}(Z, \phi X) - (n - 1)\alpha^2 g(Z, \phi X). \]

Proof. If M is a Ricci pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D, then $L_{\bar{S}} = 0$. Putting $L_{\bar{S}} = 0$ in (40), we get (41).

\[\blacksquare \]

8. Pseudosymmetric Lorentzian α-Sasakian manifold and Weyl pseudosymmetric Lorentzian α-Sasakian manifold with semi-symmetric metric connections

In the present section, we shall give the definitions of a pseudosymmetric and a Weyl-pseudosymmetric Lorentzian α-Sasakian manifolds with semi-symmetric metric connections and discuss their properties.

Definition 8.1. A Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D is said to be *pseudosymmetric* if the curvature tensor \bar{R} of D satisfies the condition
\[((\bar{R}(X, Y)).\bar{R})(U, V, W) = L_{\bar{R}} \left[((X \wedge Y)).\bar{R})(U, V, W) \right], \tag{42} \]
where
\[((\bar{R}(X, Y)).\bar{R})(U, V, W) = \bar{R}(X, Y)(\bar{R}(U, V)W) - \bar{R}(\bar{R}(X, Y)U, V)W - \bar{R}(U, \bar{R}(X, Y)V)W - \bar{R}(U, V)\bar{R}(X, Y)W \tag{43} \]
and
\[((X \wedge Y)).\bar{R})(U, V, W) = (X \wedge Y)(\bar{R}(U, V)W) - \bar{R}((X \wedge Y)U, V)W - \bar{R}(U, (X \wedge Y)V)W - \bar{R}(U, V)((X \wedge Y)W). \tag{44} \]

Definition 8.2. A Lorentzian α-Sasakian manifold M with a semi-symmetric metric connection D is said to be *Weyl pseudosymmetric* if the curvature tensor \bar{R} of D satisfies the condition
\[((\bar{R}(X, Y)).\bar{C})(U, V, W) = L_{\bar{C}} \left[((X \wedge Y)).\bar{C})(U, V, W) \right], \tag{45} \]
where
\[((\bar{R}(X, Y)).\bar{C})(U, V, W) = \bar{R}(X, Y)(\bar{C}(U, V)W) - \bar{C}(\bar{R}(X, Y)U, V)W - \bar{C}(U, \bar{R}(X, Y)V)W - \bar{C}(U, V)\bar{R}(X, Y)W \tag{46} \]
and

\[(X \wedge Y)\tilde{C}(U, V, W) = (X \wedge Y)(\tilde{C}(U, V)W) - \tilde{C}((X \wedge Y)U, V)W \]
\[- \tilde{C}(U, (X \wedge Y)V)W - \tilde{C}(U, V)((X \wedge Y)W). \] (47)

Theorem 8.1. Let \(M \) be an \(n \)-dimensional Lorentzian \(\alpha \)-Sasakian manifold. If \(M \) is Weyl pseudosymmetric, then \(M \) is either conformally flat or \(L_C = \alpha^2 \).

Proof. Let \(M \) be Weyl pseudosymmetric and \(X, Y, U, V, W \in \chi(M) \). Then, using (45) and (46) in (44), we have

\[
\tilde{R}(X, Y)(\tilde{C}(U, V)W) - \tilde{C}(\tilde{R}(X, Y)U, V)W \\
- \tilde{C}(U, \tilde{R}(X, Y)V)W - \tilde{C}(U, V)(\tilde{R}(X, Y)W) \\
= L_C \left[(X \wedge Y)(\tilde{C}(U, V)W) - \tilde{C}((X \wedge Y)U, V)W \\
- \tilde{C}(U, (X \wedge Y)V)W - \tilde{C}(U, V)((X \wedge Y)W) \right].
\] (48)

Replacing here \(X \) with \(\xi \), we obtain

\[
\tilde{R}(\xi, Y)(\tilde{C}(U, V)W) - \tilde{C}(\tilde{R}(\xi, Y)U, V)W \\
- \tilde{C}(U, \tilde{R}(\xi, Y)V)W - \tilde{C}(U, V)(\tilde{R}(\xi, Y)W) \\
= L_C \left[(\xi \wedge Y)(\tilde{C}(U, V)W) - \tilde{C}((\xi \wedge Y)U, V)W \\
- \tilde{C}(U, (\xi \wedge Y)V)W - \tilde{C}(U, V)((\xi \wedge Y)W) \right].
\]

Using (1) and (20) in (47), and taking inner product of (47) with \(\xi \), we get

\[\alpha^2 \left[-\tilde{C}(U, V, W, Y) - \eta(\tilde{C}(U, V)W)\eta(Y) \right.\]
\[+ g(Y, U)\eta(\tilde{C}(\xi, V)W) - \eta(U)\eta(\tilde{C}(Y, V)W) \]
\[+ g(Y, V)\eta(\tilde{C}(U, \xi)W) - \eta(V)\eta(\tilde{C}(U, Y)W) - \eta(W)\eta(\tilde{C}(U, V)Y) \]
\[+ \alpha \left[\tilde{C}(U, V, W, \phi Y) + \eta(U)\eta(\tilde{C}(\phi Y, V)W) - g(\phi Y, U)\eta(\tilde{C}(\xi, V)W) \right.\]
\[+ \eta(Y)\eta(\tilde{C}(U, \phi Y)W) - g(\phi Y, V)\eta(\tilde{C}(U, \xi)W) + \eta(W)\eta(\tilde{C}(U, \phi Y)W) \]
\[= L_C \left[-\tilde{C}(U, V, W, Y) - \eta(Y)\eta(\tilde{C}(U, V)W) + g(Y, U)\eta(\tilde{C}(\xi, V)W) \right.\]
\[+ \eta(U)\eta(\tilde{C}(Y, V)W) + g(Y, V)\eta(\tilde{C}(U, \xi)W) \]
\[+ \eta(Y)\eta(\tilde{C}(U, \xi)W) - \eta(W)\eta(\tilde{C}(U, Y)W) \right].
\]

Then, putting \(Y = U = \xi \), we get

\[[L_C - \alpha^2] \eta(\tilde{C}(\xi, V)W) = 0. \]

This shows that either \(\eta(\tilde{C}(\xi, V)W) = 0 \) or \(L_C - \alpha^2 = 0 \).

Now, if \(L_C - \alpha^2 \neq 0 \), then \(\eta(\tilde{C}(\xi, V)W) = 0 \), i.e., \(M \) is conformally flat and

\[S(V, W) = Ag(V, W) + Bg(V, \eta(W)) - \alpha g(\phi V, W), \]
with
\[A = \left[\alpha^2 - \frac{(n-1)\alpha^2}{n-2} + \frac{\bar{r}}{(n-1)(n-2)} \right] (n-2), \]
and
\[B = \left[\alpha^2 - 2\frac{(n-1)\alpha^2}{n-2} + \frac{\bar{r}}{(n-1)(n-2)} \right] (n-2). \]

But if \(\eta(\bar{C}(\xi, V)W) \neq 0 \), then we have \(L_{\bar{C}} = \alpha^2 \).

Theorem 8.2. Let \(M \) be an \(n \)-dimensional Lorentzian \(\alpha \)-Sasakian manifold. If \(M \) is pseudosymmetric, then either \(M \) is a space of constant curvature and \(F(X, Y) = \alpha g(\phi X, \phi Y) \) for \(\alpha \neq 0 \), or \(L_{\bar{R}} = \alpha^2 \) for \(X, Y \in \chi(M) \).

Proof. Let \(M \) be pseudosymmetric and let \(X, Y, U, V, W \in \chi(M) \). Then, using (42) and (43) in (41), we have that
\[
\bar{R}(X, Y)(\bar{R}(U, V)W) - \bar{R}(\bar{R}(X, Y)U, V)W
- \bar{R}(U, \bar{R}(X, Y)V)W - \bar{R}(U, V)(\bar{R}(X, Y)W)
= L_{\bar{R}} \left[(X \wedge Y)(\bar{R}(U, V)W) - \bar{R}((X \wedge Y)U, V)W
- \bar{R}(U, (X \wedge Y)V)W - \bar{R}(U, V)((X \wedge Y)W) \right].
\]
Replacing here \(X \) with \(\xi \), we obtain
\[
\bar{R}(\xi, Y)(\bar{R}(U, V)W) - \bar{R}(\bar{R}(\xi, Y)U, V)W
- \bar{R}(U, \bar{R}(\xi, Y)V)W - \bar{R}(U, V)(\bar{R}(\xi, Y)W)
= L_{\bar{R}} \left[(\xi \wedge Y)(\bar{R}(U, V)W) - \bar{R}((\xi \wedge Y)U, V)W
- \bar{R}(U, (\xi \wedge Y)V)W - \bar{R}(U, V)((\xi \wedge Y)W) \right].
\]
Using (1), (20) in (48) and taking inner product of (48) with \(\xi \), we get
\[
\alpha^2 \left[-\bar{R}(U, V, W, Y) - \eta(\bar{R}(U, V)W)\eta(Y)
+ g(Y, U)\eta(\bar{R}(\xi, V)W) - \eta(U)\eta(\bar{R}(Y, V)W)
+ g(Y, V)\eta(\bar{R}(U, \xi)W) - \eta(V)\eta(\bar{R}(U, Y)W) - \eta(W)\eta(\bar{R}(U, V)Y) \right]
+ \alpha \left[\bar{R}(U, V, W, \phi Y) + \eta(U)\eta(\bar{R}(\phi Y, V)W) - g(\phi Y, U)\eta(\bar{R}(\xi, V)W)
+ \eta(V)\eta(\bar{R}(U, \phi Y)W) - g(\phi Y, V)\eta(\bar{R}(U, \xi)W) + \eta(W)\eta(\bar{R}(U, \phi Y)W) \right]
= L_{\bar{R}} \left[-\bar{R}(U, V, W, Y) - \eta(Y)\eta(\bar{R}(U, V)W) + g(Y, U)\eta(\bar{R}(\xi, V)W)
- \eta(U)\eta(\bar{R}(Y, V)W) + g(Y, V)\eta(\bar{R}(U, \xi)W)
- \eta(V)\eta(\bar{R}(U, Y)W) - \eta(W)\eta(\bar{R}(U, V)Y) \right].
\]
Then, putting \(Y = U = \xi \), we get
\[
\left[L_{\bar{R}} - \alpha^2 \right] \eta(\bar{R}(\xi, V)W) = 0.
\]
This shows that either \(\eta(\bar{R}(\xi, V)W) = 0 \) or \(L_{\bar{R}} - \alpha^2 = 0 \).
Now, if $L_\bar{R} - \alpha^2 \neq 0$, then $\eta(\bar{R}(\xi, V)W) = 0$ which implies that M is a space of constant curvature and

\[
\alpha g(\phi V, \phi W) = g(\phi V, W)
\]
or

\[
F(V, W) = \alpha g(\phi V, \phi W).
\]

If $\eta(\bar{R}(\xi, V)W) \neq 0$, then we have $L_\bar{R} = \alpha^2$. □

9. Example of a pseudosymmetric Lorentzian α-Sasakian manifold with a semi-symmetric metric connection D

Let us consider a three-dimensional manifold

\[
M = \{(x_1, x_2, x_3) \in R^3 : x_1, x_2, x_3 \in R\},
\]

where (x_1, x_2, x_3) are the standard coordinates of R^3. We consider the vector fields

\[
e_1 = e^{x_3} \frac{\partial}{\partial x_2}, \quad e_2 = e^{x_3}(\frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2}) \quad \text{and} \quad e_3 = \alpha \frac{\partial}{\partial x_3},
\]

where α is a constant.

Clearly, $\{e_1, e_2, e_3\}$ is a set of linearly independent vector fields for each point of M and hence a basis of $T_x M$. The Lorentzian metric g is defined by

\[
g(e_1, e_2) = g(e_2, e_3) = g(e_1, e_3) = 0, \quad g(e_1, e_1) = g(e_2, e_2) = g(e_3, e_3) = -1.
\]

Then the form of metric becomes

\[
g = -\frac{1}{(e^{x_3})^2}(dx_2)^2 - \frac{1}{\alpha^2}(dx_3)^2
\]

which is a Lorentzian metric.

Let η be the 1-form defined by $\eta(Z) = g(Z, e_3)$ for any $Z \in \chi(M)$, and let ϕ be the $(1, 1)$-tensor field defined by

\[
\phi e_1 = -e_1, \quad \phi e_2 = -e_2, \quad \phi e_3 = 0.
\]

From the linearity of ϕ and g, we have that

\[
\eta(e_3) = -1, \quad \phi^2(X) = X + \eta(X) e_3 \quad \text{and} \quad g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y)
\]

for any $X \in \chi(M)$. Then, for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi–Civita connection of the Lorentzian metric g. Then

\[
[e_1, e_2] = 0, \quad [e_1, e_3] = -\alpha e_1, \quad [e_2, e_3] = -\alpha e_2.
\]

Recall Koszul’s formula:

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]).
\]
From the above formula, we can calculate the following:
\[
\nabla_{e_1} e_1 = -\alpha e_3, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_3 = -\alpha e_1, \\
\nabla_{e_2} e_1 = 0, \quad \nabla_{e_2} e_2 = -\alpha e_3, \quad \nabla_{e_2} e_3 = -\alpha e_2, \\
\nabla_{e_3} e_1 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_3 = 0.
\]

Hence the structure \((\phi, \xi, \eta, g)\) is a Lorentzian \(\alpha\)-Sasakian manifold (see [11]).

Using (9), we find \(D\), the semi-symmetric metric connection on \(M\):
\[
D_{e_1} e_1 = (1 - \alpha)e_3, \quad +, D_{e_1} e_2 = 0, \quad D_{e_1} e_3 = -(1 + \alpha)e_1, \\
D_{e_2} e_1 = 0, \quad D_{e_2} e_2 = (1 - \alpha)e_3, \quad D_{e_2} e_3 = -(1 + \alpha)e_1, \\
D_{e_3} e_1 = 0, \quad D_{e_3} e_2 = 0, \quad D_{e_3} e_3 = 0.
\]

Using (10), the torson tensor \(\tilde{T}\) of the semi-symmetric metric connection \(D\) may be expressed as follows:
\[
\tilde{T}(e_i, e_i) = 0, \quad i = 1, 2, 3, \\
\tilde{T}(e_1, e_2) = 0, \quad \tilde{T}(e_1, e_3) = -e_1, \quad \tilde{T}(e_2, e_3) = -e_2.
\]

Also,
\[
(D_{e_1} g)(e_2, e_3) = (D_{e_2} g)(e_3, e_1) = (D_{e_3} g)(e_1, e_2) = 0.
\]

Thus \(M\) is a Lorentzian \(\alpha\)-Sasakian manifold with a semi-symmetric metric connection \(D\).

Now, we calculate the curvature tensor \(\bar{R}\) and the Ricci tensor \(\bar{S}\) as follows:
\[
\bar{R}(e_1, e_2)e_3 = 0, \quad \bar{R}(e_1, e_3)e_3 = -(\alpha^2 + \alpha)e_1, \\
\bar{R}(e_3, e_2)e_2 = (\alpha^2 - \alpha)e_3, \quad \bar{R}(e_3, e_1)e_1 = (\alpha^2 - \alpha)e_3, \\
\bar{R}(e_2, e_1)e_1 = (\alpha^2 - 2\alpha - 1)e_2, \quad \bar{R}(e_2, e_3)e_3 = -(\alpha^2 + \alpha)e_2, \\
\bar{R}(e_1, e_2)e_2 = (\alpha^2 - 2\alpha - 1)e_1, \quad \bar{S}(e_3, e_3) = -2\alpha^2, \\
\bar{S}(e_1, e_1) = \bar{S}(e_2, e_2) = -(n - 2)(\alpha + 1).
\]

Again, using (1), we get
\[
(e_1, e_2)e_3 = 0, \quad (e_i \wedge e_i) e_j = 0, \quad i, j = 1, 2, 3, \\
(e_1 \wedge e_2)e_2 = (e_1 \wedge e_3)e_3 = -e_1, \quad (e_2 \wedge e_1)e_1 = (e_2 \wedge e_3)e_3 = -e_2, \\
(e_3 \wedge e_2)e_2 = (e_3 \wedge e_1)e_1 = -e_3.
\]

Now,
\[
\bar{R}(e_1, e_2)(\bar{R}(e_3, e_1)e_2) = 0, \quad \bar{R}(\bar{R}(e_1, e_2)e_3, e_1)e_2 = 0, \\
\bar{R}(e_3, \bar{R}(e_1, e_2)e_1)e_2 = (1 + 2\alpha - \alpha^2)(\alpha^2 - \alpha)e_3, \\
(\bar{R}(e_3, e_1)(\bar{R}(e_1, e_2)e_2) = (\alpha^2 - 2\alpha - 1)(\alpha^2 - \alpha)e_3.
\]

Then \((\bar{R}(e_1, e_2), \bar{R})(e_3, e_1, e_2) = 0.\)
Again,

\[(e_1 \wedge e_2)(\bar{R}(e_3, e_1)e_2) = 0,\]
\[\bar{R}((e_1 \wedge e_2)e_3, e_1)e_2 = 0,\]
\[\bar{R}(e_3, (e_1 \wedge e_2)e_1)e_2 = (\alpha^2 - \alpha)e_3,\]
\[\bar{R}(e_3, e_1)((e_1 \wedge e_2)e_2) = (\alpha - \alpha^2)e_3.\]

Consequently, \(((e_1, e_2)\bar{R})(e_3, e_1, e_2) = 0.\) Thus

\[(\bar{R}(e_1, e_2), \bar{R})(e_3, e_1, e_2) = L_{\bar{R}} \left[((e_1, e_2)\bar{R})(e_3, e_1, e_2) \right]\]

for any function \(L_{\bar{R}} \in C^\infty(M)\). Similarly, for any combination of \(e_1, e_2\) and \(e_3\), we can show (45). Hence \(M\) is a pseudosymmetric Lorentzian \(\alpha\)-Sasakian manifold with semi-symmetric metric connection.

Acknowledgement

The authors are thankful to the referee for the valuable comments and suggestions that improved the quality of the paper.

References

Department of Mathematics, Jadavpur University, Kolkata-700032, India

E-mail address: aribh22@hotmail.com

Purulia Polytechnic, W.B., India

E-mail address: patrachinmoy@yahoo.co.in